11.11大促主会场
新人页面
精选商品
首月0月租体验,领12个月京东PLUS
自营热卖

1.4 几何概率

银烛秋光冷画屏 1年前   阅读数 93 0

1.4 几何概率

我们在古典概型中,利用 “等可能性” 的概念可以计算简单的一类问题的概率。一些“有无限多结果,但又有某种可能性”的情况,可以通过几何方法来求解。

在这类问题中,试验的可能结果是某个区域 Ω \Omega 中的一个点。此时,可能的结果是无限的。因此,等可能性是通过下列方式赋予意义的:

落在某区域 g g 的概率和区域 g g 的测度(长度,面积,体积)等成正比,且与其位置和形状无关。

因此,若以 A g A_{g} 记“在区域 Ω \Omega 中随机地取一点,而该点落在区域 g g 中”这一事件,则其概率定义为;


P ( A g ) = g Ω P(A_{g}) = \frac{g的测度}{\Omega 的测度}


几何概率的定义和计算与几何图形的测度密切相关。因此,所考虑的事件应当是某种可定义测度的集合:这类集合的并、交也应该有这个要求。

几何概率应具有以下性质:

  1. 对任何事件 A A P ( A ) 0 P(A) \geq 0 ;
  2. P ( Ω ) = 1 P(\Omega) = 1 ;
  3. (可列可加性) 若 A 1 , A 2 , , A n A_{1},A_{2},\dotsb,A_{n} 两两互斥,则有
    P ( n = 1 A n ) = n = 1 P ( A n ) . P(\sum^{\infty}_{n = 1}A_{n}) = \sum^{\infty}_{n = 1}P(A_{n}).
发布了17 篇原创文章 · 获赞 6 · 访问量 341

注意:本文归作者所有,未经作者允许,不得转载

全部评论: 0

    我有话说: