京东-优惠雷达
新人页面
精选商品
首月0月租体验,领12个月京东PLUS
自营热卖

别愁了,预测模型这样做!

一味执着的爱情 4月前   阅读数 64 0

编辑导语:做运营的同学是不是也会头疼预测这件事?作者分享了自己的一些做预测的小技巧,期待能与你学习交流。

大家好,我是爱学习的小熊妹。

没错,我又加班了~大家都知道,小熊妹最怕下班的时候被别人长长的一声“小熊妹~~”喊住。

所以,这天我在收拾包包补个妆的时候,领导又在背后喊我了。

这次接到的任务很简单,两个字:预测。‍‍‍建预测模型,是件很复杂的事。

领导轻飘飘一句:“做个预测看看”。

不光搞得运营的小伙伴们晕头转向,也大量挤占我的煲剧时间。必须不能忍。

因此,今天整理了快速预测的方法,只用excel就能搞掂哦。大部分日常工作的预测,都是基于连续几个数据,比如:

  • 有今年1-5月销量,问6月销量咋样?
  • 有最近10周的新增用户,问第11周有多少?
  • 有过去30天的业绩,问今天业绩如何?

这种预测有个专业名词:时间序列预测。

小伙伴们看到这种不要慌,即使只有几个数,也是能建模的。首先要做的,是区分数据走势。常见的数据走势有三种:

  1. 趋势型:连续发展的态势。
  2. 躺平型:变动较少,一条直线。
  3. 周期型:有规律的周期性波动。

直接看图,能一眼认出来是哪一种(如下图)?

看个简单的例子,某互联网产品,2020年8月份上线,每月月底用户量如下表。

领导希望预测2021年6月的用户量,该如何做呢?

一、观察形态

做出该数据的折线图,可见这是典型的趋势型(增长趋势),那么就用趋势性预测方法吧。

二、处理数据

做新的折线图,做出该图趋势线。

三、选择形状

选择合适的趋势线形状,显示公式与R平方。

这一步是很多小伙伴们最怕的一步,因为不懂这些模型和参数呀,做错了咋办。

不用怕!这种几个数的短期预测,本来就不咋准。

特别是,很多业务数据,比如用户量、销售额,都是跟业务努力程度挂钩的,本身就不是数据能量化预测的,所以尽管放心大胆的做。

这里只要掌握几个基本原则就行了:

  • 选取的趋势线,和实际走势接近(不要实际往上走,趋势线却往下走)。
  • R平方数值尽量接近1(习惯上不小于0.6)。如上图所示,如果是选择多项还可以通过调整项数,提高趋势线的R平方,让趋势线更接近实际走势形状(如下图)。

四、预测结果

把预测模型写进单元格,预测结果。公式出来以后,做一些小调整,直接复制出来就好了。这里选择了多项,参数为2的情况(如下图)。

这里简单解释一下公式公式里Y就是要预测的用户量数据(因变量),X是自变量,也就是时间,X平方就是时间*时间,对应关系如下:

其实,趋势线拟合的原理,就是假设数据随着时间变化而变化。因此因变量是数据指标,而自变量就是时间,以及时间的各种形态,比如时间的平方、对数、指数等等。

五、预测未来情况

这里有10个数据,要预测下个月的,就是第11个数据,时间是11,时间平方是121,代入公式,就能算出预测值(如下图)。

这样就完成啦!多简单。

勤快的小伙伴,在实验这个方法的时候,会发现:很有可能好几种趋势线预测出来的结果,R平方都是接近1的,这时候该怎么选呢?

如果一定要纠结这个问题(我强烈建议你不要纠结这个,我们又不专业,让专业做算法的小哥哥纠结去)。

可以计算平均平方差(MSE),哪个方法的MSE数值小,就用哪个(如下图)。

明显,2次拟合的MSE值更小,就用这个啦。

到这里,就全部做完啦。多简单。

这种趋势拟合(又叫趋势外推),是解决趋势型预测的非常快捷的方法。

其优点,包括:

  • 需要的数据少,几个数也能预测。
  • 能模拟曲线走势,不会出现方向性错误。
  • 是个模型,充分满足领导对建模的憧憬但缺点也是很明显的。

领导一句话就能把它打败:“那你所说,这预测的134万用户,到底是哪些渠道做出来的?”

很遗憾,完全说不了。因为模型只是模拟了曲线的走势,并不能解释走势是怎么来的。

用数据分析的专业术语,叫:业务可解释程度差。这种可解释性差,有时候会引发很严重的问题。

比如小伙伴们看回上一张图,虽然2次拟合的MSE值更小,但是这个预测结果明显有问题:本来是连续10个月上涨,这个月居然变成下跌了!

很有可能引发领导连珠炮似的问题:

  • 为什么会下跌?
  • 是新增少还是流失多?
  • 运营不给力还是产品体验差?
  • 需要短期拉动还是长期拐点到了?

更加遗憾的是,模型本身更解释不了这些。

所以聪(jiao)明(hua)的小伙伴,会果断放弃二次拟合的结果,用线性拟合的结果。

因为这样更符合领导预期(少被人喷)。

那如果领导一定要解释到底新增的是从哪些渠道来的。该怎么办呢?这时候可以利用杜邦分析法,对用户量指标做拆解(如下图)。

拆解完以后,我们一个个去找对应渠道负责的同学问:

  • 亲,这个A渠道,你们6月份还做不做?
  • 亲,如果做A渠道的话,你们准备投多少?
  • 亲,A渠道过去转化率为x%,你们准备做优化不?

问了一堆问题以后,把收集到的信息,做一张汇总表,把下个月为什么是这么多人,解释得明明白白(如下图)。

这就是大名鼎鼎的业务预测模型,这种预测模型的可解释程度就高多了,可以明明白白地讲清楚:

  • 增长来自哪里
  • 为什么增长这么多
  • 如果不达标,还能做什么

但是这样的缺点也是很明显的:

  • 它没有让人看不懂的算法,显得不厉害
  • 需要运营的大量输入,而运营不见得想说话
  • 即使运营想说,也有可能在拍脑袋,很有可能拍得不准所以呢,世上没有两全法,只能看情况做预测咯。

以上就是今天小熊妹整理的知识点。还差两个:躺平型与季节型,火锅已经点好了,下次再写。

 

作者:码工小熊,微信公众号:码工小熊

本文由 @码工小熊 原创发布于人人都是产品经理,未经许可,禁止转载。

题图来自 Unsplash,基于CC0协议

 

给作者打赏,鼓励TA抓紧创作!

注意:本文归作者所有,未经作者允许,不得转载

全部评论: 0

    我有话说: